I he Reaction of Organozinc Reagents with Trifluoroacylated Phosphonates: Synthesis of Trifluoromethylated α , β -Unsaturated Esters with an Active Methylene Moiety

Yanchang Shen and Jiahong Ni

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, People's Republic of China

Received 6 October 2003; revised 4 February 2004; accepted 18 February 2004

ABSTRACT: *The consecutive reaction of phosphonates* **1** *with n-butyllithium, trifluoroacetic anhydride, and organozinc compounds gives trifluoromethylated α,β-unsaturated esters with an active methylene moiety and predominant Z-selectivity in 54–78% (3 steps)* yields. © 2004 Wiley Periodicals, Inc. Heteroatom Chem 15:289–292, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/hc.20018

INTRODUCTION

Much attention has been devoted to the synthesis of α , β -unsaturated acids and their esters, because such compounds have been noted as important structure feature in a number of naturally occurring compounds which show biological activities [1]. They are useful intermediates in synthesis of some bioactive compounds [2] and are able to undergo many useful synthetic transformations [3]. In the past several decades fluorinated α, β -unsaturated esters have attracted much interest, particularly for the synthesis of fluorine-containing bioactive compounds [4]. Recently, stereoselective synthesis of trisubstituted and tetrasubstituted α , β -unsaturated esters via copper-catalyzed coupling of enol triflates of β -ketoesters with Grignard-based zinc ate complexes was reported [5]. However, to the best of our knowledge, the synthesis of fluorinated tetrasubstituted $\alpha,$ β-unsaturated esters is still limited [6].

RESULTS AND DISCUSSION

As part of our continuing investigation of synthetic application of consecutive reaction of phosphorus compounds in organic synthesis [6b,7] herein we report the consecutive reaction of phosphonates **1** with *n*-butyllithium, trifluoroacetic anhydride, and organozinc compounds to give trifluoromethylated α ,β-unsaturated esters with an active methylene moiety and predominant *Z*-selectivity. The reaction sequence is shown in Scheme 1.

Phosphonate **1** was treated with *n*-butyllithium in tetrahydrofuran (THF) at −78◦ C and the resulting carbanion **2** reacted with trifluoroacetic anhydride to form the intermediate **3** which was further reacted with organozinc compounds, followed by elimination of phosphate anion, giving substituted trifluoromethylated α ,β-unsaturated esters with predominant *Z*-selectivity in 54–78% yields (3 steps). The results are summarized in Table 1.

Correspondence to: Yanchang Shen; e-mail: shenyc@mail.sioc. ac.cn.

Contract grant sponsor: National Natural Science Foundation of China.

Contract grant sponsor: Chinese Academy of Sciences.

 $©$ 2004 Wiley Periodicals, Inc.

The 19F NMR data of similar compounds *Z*-**5** and *E*-**5** have been reported [6b]:

If the trifluoromethyl group is cis with respect to the ester group, the chemical shifts of the trifluoromethyl group appear downfield (*Z*-**5**), while those trans with respect to the ester group are shifted upfield (*E*-**5**). In the cases of **4a–4e**, the chemical shifts of trifluoromethyl group are in the range of −17.0 to −18.1 ppm, hence the configurations of the **4a– 4e** could be ascertained as *Z*-isomers. In addition, on the basis of coupling constant across the double bond reported in the literature [8], if the trifluoromethyl group was trans with respect to the F group,

TABLE 1 Substituted Trifluoromethylated α,β-Unsaturated Esters Prepared

Compound	R	x	Yield (%) ^a	Ratio $(Z:E)^b$
4a	CH ₃	CO2Me	66	100:0
4b	CH ₃	CO ₂ Et	62	100:0
4c	CH ₃	CO ₂ Pr ⁱ	54	100:0
4d	CH ₃	CO ₂ Bu ^t	62	100:0
4e	CH ₃	$CH2=CH$	57	100:0
4f	F	CO ₂ Et	74	$5:95^{c}$
4g	F	CO ₂ Bu ^t	78	$34:66^{c}$
4h	F	$CH2=CH$	66	$14:86^{c}$

*^a*Isolated yields.

*^b*The ratios of *E*- and *Z*-isomers are estimated on the basis of NMR data.

the ${}^{4}J_{\text{FFtrans}}$ ranged from 7 to 13 Hz, while for those cis with respect to the F group, the ⁴ *J*_{Ffcis} ranged from 21 to 31 Hz. Thus the configuration of **4f–4g** could be ascertained.

It is noteworthy that the title compounds with an active methylene moiety are able to deprotonate by a base forming a carbanion, which would be a potential useful fluorine-containing building block in organic synthesis.

When the organozinc reagent with double bond moiety $(BrZnCH₂CH=CH₂)$ (**4e** and **4h**) is used as starting material, the trifluoromethylated dienyl carboxylates were obtained.

In summary this methodology provides a convenient synthesis of the title compounds, which would be useful intermediates in the synthesis of fluorinecontaining biological active compounds.

EXPERIMENTAL

All boiling points are uncorrected. The IR spectra of liquid products were determined as films on a Digilab FTS-20E spectrometer. ${}^{1}H$ NMR spectra were recorded on a Bruker AM-300 (300 MHz) spectrometer (values in ppm from SiMe₄, in CDCl₃; *J* values are given in Hz). 19F NMR spectra were taken on a Varian EM-360 (60 MHz) spectrometer with CF_3CO_2H as external standard, positive for upfield shifts. Mass spectra were measured on a Finnigan GC-MS-4021 mass spectrometer. HRMS data were obtained on a Finnigan-Mat 8430 high resolution mass spectrometer.

Diethyl (1-ethoxycarbonyl-1-fluoromethyl) phosphonate

It was prepared according to the known method [9].

General Procedure for the Preparation of Substituted Trifluoromethylated α,β-Unsaturated Esters

Treatment of phosphonate (**1**) (3 mmol) with *n*butyllithium (3 mmol) in absolute THF (15 ml) at −78◦ C under nitrogen gave the phosphoryl-stabilized carbanion **2**, which was stirred at −78◦ C for 0.5 h under nitrogen. Trifluoroacetic anhydride (0.63 g, 3 mmol) was added to it in one portion. After stirring at −78◦ C for 0.5 h, the reaction mixture was allowed to warm to 20◦ C and the organozinc reagent [9 mmol, prepared from 9 mmol of bromoacetic ester and 9 mmol (0.59 g) of zinc powder] [10] was added to the mixture, which was stirred for another 4 h. The reaction mixture was poured into 0.5 N HCl solution (15 ml) and the water layer was

c According to the sequence rules, in **4f–4h** (fluorine group instead of methyl group), when the fluorine group is trans with respect to the trifluoromethyl group, the stereoisomer is assigned as the *E*-isomer and, conversely in **4a–4e** they are assigned as the *Z*-isomer.

extracted with ethyl ether $(3 \times 20 \text{ ml})$. The combined organic layer was washed with water $(3 \times 15 \text{ ml})$ and dried over $Na₂SO₄$. Evaporation of the solvent gave a residue, which was purified by column chromatography eluting with petroleum ether (60–90◦ C)-ethyl acetate (99:2) to give the product **4**.

*Z-Ethyl 4-methoxycarbonyl-3-trifluoromethyl-2-methylbut-2-enoate (***Z-4a***)*

Yield: 66%; bp. 78◦ C/2 mm Hg. *Z*:*E* = 100:0. IR (neat): *υ* = 2990, 1750, 1730, 1660, 1440, 1270, 1130 cm⁻¹. ¹H NMR (CDCl₃/TMS): δ = 4.24 (q, *J* = 7.1 Hz, 2H), 3.70 (s, 3H), 3.48 (s, 2H), 2.14 (q, *J* = 1.8 Hz, 3H), 1.30 (t, $J = 7.1$ Hz, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.2$ (s, 3F). MS: m/z (%) = 255 (M⁺ + 1, 18), 223 (87), 209 (100), 208 (50), 195 (30), 181 (86), 180 (66), 167 (38). Anal Calc. for $C_{10}H_{13}F_3O_4$ (254.20): C, 47.25; H, 5.15. Found: C, 46.85; H, 4.99.

*Z-Ethyl 4-ethoxycarbonyl-3-trifluoromethyl-2-methylbut-2-enoate (***Z-4b***)*

Yield: 62%; bp. 89◦ C/2 mm Hg. *Z*:*E* = 100:0. IR (neat): *υ* = 2990, 1750, 1730, 1660, 1270, 1200, 1130, 1040 cm^{−1}. ¹H NMR (CDCl₃/TMS): $δ = 4.24$ (q, $J =$ 7.1 Hz, 2H), 4.16 (q, *J* = 7.1 Hz, 2H), 3.46 (s, 2H), 2.34 (q, *J* = 2.1 Hz, 3H), 1.30 (t, *J* = 7.1 Hz, 3H), 1.25 $(t, J = 7.1 \text{ Hz}, 3\text{H})$. ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.0$ (s, 3F). MS: m/z (%) = 269 (M⁺ + 1, 8), 223 (100), 222 (38), 195 (82), 194 (31), 167 (83), 166 (38), 148 (36), 128 (34). Anal Calc. for $C_{11}H_{15}F_3O_4$ (268.23): C, 49.26; H, 5.64. Found: C, 48.92; H, 5.67.

*Z-Ethyl 4-i-propoxycarbonyl-3-trifluoromethyl-2-methylbut-2-enoate (***Z-4c***)*

Yield: 54%; bp. 90◦ C/2 mm Hg. *Z*:*E* = 100:0. IR (neat): *υ* = 2990, 1740, 1660, 1270, 1200, 1130, 1040 cm⁻¹. ¹H NMR (CDCl₃/TMS): $\delta = 5.01$ (sept, $J =$ 6.3 Hz, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 3.43 (s, 2H), 2.13 (q, $J = 1.9$ Hz, 3H), 1.30 (t, $J = 7.1$ Hz, 3H), 1.22 $(d, J = 6.3 \text{ Hz}, 6\text{H})$. ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.3$ $(s, 3F)$. MS: m/z (%) = 283 (M⁺ + 1, 23), 241 (46), 223 (100), 196 (9), 195 (38), 167 (14), 43 (25). Anal Calc for $C_{12}H_{17}F_3O_4$ (282.25): C, 51.06; H, 6.07. Found: C, 50.86; H, 5.91.

*Z-Ethyl 4-t-butoxycarbonyl-3-trifluoromethyl-2-methylbut-2-enoate (***Z-4d***)*

Yield: 62%; bp. 96◦ C/2 mm Hg. *Z*:*E* = 100:0. IR (neat): *^υ* ⁼ 2990, 1740, 1660, 1370, 1130, 1040 cm−1. 1H NMR (CDCl3/TMS): *^δ* ⁼ ⁴.24 (q, *^J* ⁼ ⁷.1 Hz, 2H), 3.36 (s, 2H), 2.12 (q, *J* = 2.2 Hz, 3H), 1.40 (s, 9H),

1.30 (t, $J = 7.1$ Hz, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta =$ -17.5 (s, 3F). MS: m/z (%) = 297 (M⁺ + 1, 12), 242 (13), 241 (100), 224 (5), 223 (45), 195 (7), 175 (5).

HRMS: m/z Calc. for $C_{13}H_{19}F_3O_4$: 296.1235, Found 296.1237.

*Z-Ethyl 3-trifluoromethyl-2-methylhexa-2,5-dienoate (***Z-4e***)*

Yield: 57%; bp. 85◦ C/10 mm Hg. *Z*:*E* = 100:0. IR (neat): *υ* = 2990, 1730, 1730, 1670, 1270, 1190, 1130 cm⁻¹. ¹H NMR (CDCl₃/TMS): δ = 5.88–5.72 (m, 1H), 5.16–5.09 (m, 2H), 4.26 (q, *J* = 7.1 Hz, 2H), 3.06 (d, *J* = 6.0 Hz, 2H), 2.09 (q, *J* = 2.4 Hz, 3H), 1.32(t, $J = 7.1$ Hz, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta = -18.1$ (s, 3F). MS: *m*/*z* (%) = 220 (M⁺ − 2, 3), 179 (31), 177 (44), 149 (56), 130 (53), 129 (100), 109 (31), 79 (53). Anal Calc. for $C_{10}H_{13}F_3O_2$ (222.20): C, 54.05; H, 5.90. Found: C, 53.76; H, 5.89.

*Ethyl 4-ethoxycarbonyl-3-trifluoromethyl-2-fluorobut-2-enoate (***4f***)*

Yield: 74%; bp. 86◦ C/2 mm Hg. *Z* : *E* = 5 : 95. IR (neat): *υ* = 2990, 1750, 1660, 1320, 1200, 1160, 1090, 1020 cm^{−1}. ¹H NMR (CDCl₃/TMS): $δ = 4.36$ (q, $J =$ 7.1 Hz, 2H), 4.19 (q, $J = 7.1$ Hz, 2H), 3.72 (d, $J = 1.6$ Hz, 0.05×2 H), 3.40 (d, $J = 3.8$ Hz, 0.95×2 H), 1.35 $(t, J = 7.1$ Hz, 3H), 1.26 $(t, J = 7.1$ Hz, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.5$ (d, $J = 10$ Hz, 0.95 \times 3F), -14.5 (d, $J = 24$ Hz, 0.05×3 F), 28.8 (m, 1F). MS: *m*/*z* (%) = 273(M⁺ + 1, 9), 253 (13), 227 (26), 199 (43), 172 (86), 171 (100), 152 (60), 132 (68). Anal Calc. for $C_{10}H_{12}F_4O_4$ (272.19): C, 44.13; H, 4.44. Found: C, 43.91; H, 4.48.

*Ethyl 4-tert-butoxycarbonyl-3-trifluoromethyl-2-fluorobut-2-enoate (***4g***)*

Yield: 78%; bp. 88◦ C/2 mm Hg. *Z* : *E* = 34 : 66. IR (neat): *υ* = 2990, 1740, 1660, 1380, 1330, 1280, 1160, 1020 cm^{-1} . ¹H NMR (CDCl₃/TMS): $\delta = 4.42 - 4.34 \text{ (m)}$, 2H), 3.66(d, $J = 1.7$ Hz, 0.34 \times 2H), 3.34 (d, $J =$ 3.8 Hz, $0.66 \times 2H$), 1.47 (s, 9H), 1.37 (t, $J = 7.2$ Hz, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.8$ (d, $J = 10$ Hz, $0.66 \times 3F$, -14.0 (d, $J = 24$ Hz, $0.34 \times 3F$), 29.8 (m, 0.66×1 F), 32.4 (m, 0.34 \times 1F). MS: m/z (%) = 301 (M⁺ + 1, 16), 245 (100), 227 (28), 57 (54). HRMS: *m*/*z* Calc. for $C_{12}H_{16}F_4O_4$: 300.0985, Found 300.0953.

*Ethyl 3-trifluoromethyl-2-fluorohexa-2,5-dienoate (***4h***)*

Yield: 66%; bp. 82◦ C/10 mm Hg. *Z* : *E* = 14 : 86. IR (neat): *υ* = 2990, 1740, 1670, 1640, 1270, 1190, 1380, 1350, 1280, 1220, 1140 cm−1. 1H NMR (CDCl3/TMS): δ = 5.90–5.72 (m, 1H), 5.25–5.10 (m, 2H), 4.35 (q, $J = 7.1$ Hz, 2H), 3.40 (d, $J = 6.1$ Hz, 0.86 \times 2H), 3.10 $(dd, J = 6.1, 3.6 Hz, 0.14 \times 2H$, 1.37 (t, $J = 7.2 Hz$, 3H). ¹⁹F NMR (CDCl₃/TFA): $\delta = -17.6$ (d, $J = 10$ Hz, $0.14 \times 3F$, -15.6 (d, $J = 24$ Hz, $0.86 \times 3F$), 32.5– 34.8 (m, 1F). MS: m/z (%) = 227 (M⁺ + 1, 28), 199 (34), 172 (47), 171 (73), 152 (38), 132 (37), 57 (100). HRMS: m/z Calc. for C₉H₁₀F₄O₂: 226.0617, Found 226.0604.

REFERENCES

- [1] (a) Dawidar, A. M.; Esmirly, S. T.; Al-Hajar, A. S. M.; Jakupovic, J.; Abdel-Mogib, M. Phytochemistry 1989, 28, 3227; (b) Hernandez, R.; Rivera, A.; Suarez, E.; Prange, T. J Org Chem 1989, 54, 5343; (c) Al-Said, M. S.; Evans, W. C.; Grout, R. J. Phytochemistry 1989, 28, 3211; (d) Toong, Y. C.; Schooley, D. A.; Baker, F. C. Nature 1988, 333, 170; (e) Kehrli, A. R. H.; Taylor, D. A. H.; Niven, M. Phytochemistry 1990, 29, 153; (f) Beale, M. H. Nat Prod Rep 1990, 7, 25; (g) Ikeda, T.; Fujiwara, S.; Araki, K.; Kinjo, J.; Nohara, T.; Miyoshi, T. J Nat Prod 1997, 60, 102.
- [2] (a) Ikota, O. Heterocycles 1995, 41, 983; (b) Borrell, J. I.; Teixido, J.; Martinez-Teipel, B.; Matallana, J. L.; Copete, M. T.; Llimargas, A.; Garcia, E. J Med Chem 1998, 41, 3539; (c) Jaroch, S.; Matsuoka, R. T.; Overman, L. E. Tetrahedron Lett 1999, 40, 1273; (d) He, L.; Byun, H.-S.; Bittman, R. J Org Chem 2000, 65, 7618.
- [3] (a) Kouklovsky, C.; Dirat, O.; Berranger, T.; Langlois, Y.; Tran-Huu-Dau, M. E.; Riche, C. J Org Chem 1998,

63, 5123; (b) Frey, L. F.; Tillyer, R. D.; Caille, A. S.; Tschaen, D. M.; Dolling, U. H.; Grabowski, E. J. J.; Reider, P. J. J Org Chem 1998, 63, 3120; (c) Guindon, Y.; Guerin, B.; Landry, S. R. Org Lett 2001, 3, 2293; (d) Chun, J.; Byun, H.-S.; Bittman, R. Tetrahedron Lett 2002, 43, 8043; (e) Harmata, M.; Hong, X. J Am Chem Soc 2003, 125, 5754; (f) Rodriguez Rivero, M.; Carretero, J. C. J Org Chem 2003, 68, 2975.

- $[4]$ (a) Gärtner, W.; Oesterhelt, D.; Towner, P.; Hopf, H.; Ernst, L. J Am Chem Soc 1981, 103, 7642; (b) Asato, A. E.; Mead, D.; Denny, M.; Bopp, T. T.; Liu, R. S. H. J Am Chem Soc 1982, 104, 4979; (c) Asato, A. E.; Liu, R. S. H. Tetrahedron Lett 1986, 27, 3337; (d) Mead, D.; Asato, A. E.; Denny, M.; Liu, R. S. H.; Hanzawa, Y.; Taguchi, T.; Yamada, A.; Kobayashi, N.; Hosoda, A.; Kobayashi, Y. Tetrahedron Lett 1987, 28, 259; (e) Zhang, X.; Qing, F.-L. J Org Chem 2002, 67, 1016.
- [5] Ide, M.; Nakata, M. Synlett 2001, 1511.
- [6] Shen, Y.; Xiang, Y. J Fluorine Chem 1991, 52, 221; (b) Shen, Y.; Ni, J. J Fluorine Chem 1998, 89, 141.
- [7] (a) Shen, Y.; Ni, J. J Org Chem 1997, 62, 7260; (b) Shen, Y.; Li, P.; Ni, J.; Sun, J. J Org Chem 1998, 63, 9396; (c) Shen, Y.; Zhang Z. J Chem Res (S) 1998, 642; (d) Shen, Y.; Jiang, G.-F. Synthesis 2000, 502; (e) Shen, Y.; Wang, G.; Sun, J. J Chem Soc Perkin Trans 1, 2001, 519.
- [8] Burton, D. J.; Krutzsch, H. C. J Org Chem 1970, 35, 2125.
- [9] Thenappan, A.; Burton, D. J. J Org Chem 1990, 55, 4639.
- [10] The effect of the amount of organozinc reagent used was investigated with diethyl (1-ethoxycarbonyl) ethylphosphonate and $BrZnCH₂CO₂CH₃$ as reactants. When the amount of organozinc reagent used was increased from 3 to 9 mmol, the yield was increased from 45 to 66%.